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Author introduction

Matthias Scheffler is a theoretical physicist whose research focuses on condensed matter theory, materials science, and artificial
intelligence. He is particularly known for his contributions to density-functional theory and many-electron quantum mechanics and for his
development of multiscale approaches. In the latter, he combines electronic-structure theory with thermodynamics and statistical
mechanics and employs numerical engineering methods. As summarized by his appeal "Get Real!", he introduced environmental factors
(e.g. partial pressures, deposition rates, and temperature) into ab initio calculations. In recent years, he has increasingly focused on data-
centric scientific concepts and methods (the fourth paradigm of materials science) and on the goal that materials-science data must become
"Findable and Artificial Intelligence Ready."
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Al guided workflows for efficiently screening the
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Matthias Scheffler

The NOMAD Laboratory at the Fritz Haber Institute of the Max Planck Society, Berlin, Germany

Abstract Artificial intelligence (AI) may capture the properties and functions of materials better than previous
theoretical/computational methods because it targets correlations and does not assume a single, specific underlying
physical model. Therefore, it addresses the full intricacy of the numerous processes that govern the function of
materials. However, the statistical analysis and interpretation of Al models require careful attention.

The review article started with a brief discussion of historical aspects of data-centric science. It then focused on the
recently developed, explainable Al methods [8,10] and applications [2,11,12]. The identified "rules" determine the
properties and functions of materials. The rules depend on descriptive parameters called "materials genes." As genes in
biology, they are correlated with a certain material property or function. Thus, these materials genes help to identify
materials that are, for example, better electrical conductors or better heat insulators or better catalysts.

Keywords artificial intelligence, machine learning, active learning, symbolic regression, materials science, materials
genes.
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